LETTERS

Synthesis of Indolo[1,2-*a*][1,8]naphthyridines by Rhodium(III)-Catalyzed Dehydrogenative Coupling via Rollover Cyclometalation

Ryosuke Morioka,[†] Kazunori Nobushige,[†] Tetsuya Satoh,^{*,†,‡,§} Koji Hirano,[†] and Masahiro Miura^{*,†}

[†]Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan [‡]JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

[§]Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

Supporting Information

ABSTRACT: The rhodium-catalyzed dehydrogenative coupling of *N*-pyridylindoles with alkynes proceeds smoothly through rollover cyclometalation to produce indolo[1,2-a][1,8]naphthyridine derivatives. A number of tetra-, penta-, and hexacyclic *N*-containing heteroaromatics can also be readily constructed in a similar manner. The L-shaped π -conjugated molecules exhibit intense solid-state fluorescence.

F used polycyclic heteroarene compounds have been recognized as important frameworks in organic materials as well as pharmaceutical fields.¹ Therefore, simple and flexible procedures for constructing such π -conjugated molecules from readily available starting materials are strongly needed. One of the most promising strategies for such a synthetic purpose is the transition-metal-catalyzed dehydrogenative coupling of phenylheteroarenes or bisheteroarenes with alkynes via C–H bond cleavage.² For example, the rhodium(III)-mediated and -catalyzed annulation of 2-phenylpyridines with alkynes through successive C–C and C–N bond formations has been reported by Jones', Cheng's, and Huang's groups (Scheme 1,

path a).³ In this reaction, coordination of the nitrogen atom of the substrates to the metal center of the catalyst is the key to trigger the regioselective C-H bond cleavage/annulation at the neighboring positions. The other annulation that involves double C-H bond cleavages and two C-C bond formations (path b) also appears to be attractive because this enables us to construct a different neutral polycyclic system. The latter reaction proceeds through the rollover cyclometalation step⁴ of a common metalacycle intermediate A before or after an alkyne insertion step. However, this type of annulation of pyridyl-(hetero)arenes rarely has been found,⁵ probably due to the strong coordination of the pyridyl moiety to the metal center to render the rollover cyclometalation/annulation process less favorable. In the context of our studies on rhodium(III)catalyzed fused (hetero)arene construction,⁶ we succeeded in finding that N-(2-pyridyl)indoles undergo dehydrogenative coupling with alkynes via rollover cyclometalation to afford indolo[1,2-a][1,8]naphthyridine derivatives. This type of Lshaped π -extended molecules has attracted much attention because of their interesting fluorescent properties.⁷ Expectedly, most of the thus obtained tetra-, penta-, and hexacyclic compounds exhibited intense fluorescence in the solid state. These new findings are described herein.

In an initial attempt, N-(2-pyridyl)indole (1a) (0.2 mmol) was treated with diphenylacetylene (2a) (0.2 mmol) in the presence of $[Cp*RhCl_2]_2$ (0.004 mmol, 2 mol %), Cu(OAc)₂· H₂O (0.4 mmol), and K₂CO₃ (0.4 mmol) as catalyst, oxidant, and additive, respectively, under N₂ in *o*-xylene at 120 °C for 6 h. As a result, small amounts of the desired rollover annulation product, 5,6-diphenylindolo[1,2-a][1,8]naphthyridine (3aa), and the C2-alkenylated product 4a were formed (Table 1,

 Received:
 May 19, 2015

 Published:
 June 11, 2015

© 2015 American Chemical Society

Table 1. Reaction of N-(2-Pyridyl)indole (1a) with Diphenylacetylene $(2a)^a$

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), $[Cp*RhCl_2]_2$ (0.004 mmol) in solvent (2 mL) under N₂ for 6 h, unless otherwise noted. ^{*b*}GC yield based on the amount of **2a** used. Value in parentheses indicates yield after purification. ^{*c*}With K₂CO₃ (0.4 mmol). ^{*d*}With **1a** (0.3 mmol). ^{*c*}With **1a** (1.5 mmol), **2a** (1 mmol), and $[Cp*RhCl_2]_2$ (0.02 mmol) in PhCl (10 mL).

entry 1).⁸ The use of PhCl as solvent resulted in a slightly increased yield of **3aa** (entry 2). In contrast, the reaction in 1,1,2,2-tetrachloroethane (TCE) gave **4a** predominantly in 62% yield (entry 3). The use of AgOAc as oxidant suppressed the formation of **4a** almost completely to afford **3aa** in 20% yield (entry 4). Increasing in the amount of AgOAc to 0.6 mmol in the absence of K_2CO_3 improved the yield of **3aa** up to 69% (entry 5). Finally, **3aa** was obtained quantitatively at 140 °C with an increased amount of **1a** (0.3 mmol) (entry 7). The scale-up did not affect **3aa** yield significantly (entry 8). On the other hand, even with AgOAc as oxidant, **4a** was produced selectively when the reaction was conducted in 1,2-dichloroethane (DCE) (entry 9). Expectedly, the reaction in TCE or DCE using a catalytic amount of Cu(OAc)₂·H₂O at 100 °C selectively gave **4a** in a high yield (entries 10 and 11).

Under the optimized conditions (Table 1, entry 7), the reactions of 1a with bis(4-substituted phenyl) acetylenes 2b-h proceeded efficiently to give the corresponding products 3ab-ah in 61-94% yields (Table 2, entries 1-7). Di(2-naphthyl)-(2i) and di(2-thienyl)acetylenes (2j) could also be employed for the annulation (entries 8 and 9). The reaction with unsymmetric 1-phenyl-1-hexyne (2k) gave a mixture of regioisomers 3ak and 3ak' (entry 10).

Next, we examined the annulative coupling of various N-(2-pyridyl)indoles and related compounds 1 with 2a (Table 3). The reactions of 3-, 5-, 6-, and 7-substituted N-(2-pyridyl)-indoles 1b–j afforded the corresponding indolonaphthyridines 3ba–ja in 60–93% yields. In the case of 1d, an increase in the amount of the catalyst was needed to conduct the reaction comparably. 5-Substituted 2-pyridyl (1k,l) and 2-pyrazinyl

Table 2. Reaction of N-(2-Pyridyl)indole (1a) with Alkynes

"Reaction conditions: 1a (0.3 mmol), 2 (0.2 mmol), $[Cp*RhCl_2]_2$ (0.004 mmol), AgOAc (0.6 mmol) in PhCl (2 mL) under N₂ for 6 h at 140 °C. ^bIsolated yield based on the amount of 2 used. ^cDetermined by ¹H NMR.

(1m) groups were found to act as good directing groups to give 3ka-ma selectively. N-(2-Pyridyl)benzimidazole (1n) also underwent coupling with 2a to produce 3na in 95% yield. Interestingly, N-(2-pyridyl)benzindole 1o, N-(2-quinolinyl)-indoles 1p-r, and N-(2-quinolinyl)benzindole 1s coupled with 2a smoothly to afford penta- and hexacyclic compounds 3oa-sa.

A plausible mechanism for the reaction of 1a with 2 is illustrated in Scheme 2. The reaction may involve pyridyl nitrogen-directed cyclorhodation to form intermediate **B** followed by alkyne insertion/rollover cyclorhodation via **C** or **D** and successive reductive elimination from resulting **E** to afford **3**. It was confirmed that the pyridyl nitrogen of 1a is essential as the director for the present annulation. Thus, treatment of *N*-phenylindole (5) in place of 1a together with 2a did not give any coupling product (eq 1).

The protonation of intermediate **C** may take place preferably in TCE or DCE (Table 1, entries 8 and 9), rather than the

Table 3. Reaction of N-(2-Pyridyl)indoles 1 with Diphenylacetylene $(2a)^a$

^{*a*}Reaction conditions: **1** (0.3 mmol), **2a** (0.2 mmol), $[Cp*RhCl_2]_2$ (0.004 mmol), AgOAc (0.6 mmol) in PhCl (2 mL) under N₂ for 6 h at 140 °C, unless otherwise noted. ^{*b*}Isolated yield based on the amount of **2a** used. ^{*c*}With $[Cp*RhCl_2]_2$ (0.008 mmol). ^{*d*}With $[Cp*RhCl_2]_2$ (0.016 mmol).

rollover cyclorhodation, to give 4 selectively. It was also confirmed that 4 is not an intermediate for the formation of 3. Thus, 3aa was not produced at all in the treatment of 4a under the standard conditions (eq 2).

Most of the annulation products 3 described above showed solid-state fluorescence in a range of 430–550 nm, as was expected (see the Supporting Information). Notably, compounds **3ba** and **3na** exhibited relatively strong emissions compared with a typical emitter, tris(8-hydroxyquinolino)-aluminum (Alq₃), by factors of 3.4 and 8.1 (excited at 380 nm). The quantum efficiencies of the solid-state fluorescence of **3ba** and **3na** were measured at absolute values of 0.51 and 0.80, respectively.

In summary, we have demonstrated that indolo[1,2-a][1,8]naphthyridine and related benzo-fused frameworks can be readily constructed by the rhodium-catalyzed dehydrogenative coupling of *N*-pyridylindoles with alkynes. This reaction involves rollover cyclometalation as a key step. Most of the annulation products exhibit intense fluorescence in the solid state.

ASSOCIATED CONTENTSupporting Information

Experimental procedures, additional data for fluorescence, and characterization data of products. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.Sb01452.

AUTHOR INFORMATION Corresponding Authors

*E-mail: satoh@chem.eng.osaka-u.ac.jp. *E-mail: miura@chem.eng.osaka-u.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Prof. Dr. N. Tohnai, Osaka University, for fluorescence quantam efficiency measurements. This work

Organic Letters

was partly supported by Grants-in-Aid from MEXT, JSPS, and JST, Japan.

REFERENCES

(1) For example, see: (a) Bałczewski, P.; Bodzioch, A.; Różycka-Sokołowska, E.; Marciniak, B.; Uznański, P. Chem.—Eur. J. 2010, 16, 2392. (b) Palayangoda, S. S.; Cai, X.; Adhikari, R. M.; Neckers, D. C. Org. Lett. 2008, 10, 281. (c) Li, Y.; Wu, Y.; Gardner, S.; Ong, B. S. Adv. Mater. 2005, 17, 849. (d) Hu, N.-X.; Xie, S.; Popovic, Z.; Ong, B.; HorSuning Wang, A.-M. J. Am. Chem. Soc. 1999, 121, 5097. See also selected reviews: (e) Schmidt, A. W.; Reddy, K. R.; Knölker, H.-J. Chem. Rev. 2012, 112, 3193. (f) Knölker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303.

(2) For selected recent reviews for C-H functionalization, see: (a) Song, G.; Li, X. Acc. Chem. Res. 2015, 48, 1007. (b) Miura, M.; Satoh, T.; Hirano, K. Bull. Chem. Soc. Jpn. 2014, 87, 751. (c) Jin, T.; Zhao, J.; Asao, N.; Yamamoto, Y. Chem.-Eur. J. 2014, 20, 3554. (d) De Sarkar, S.; Liu, W.; Kozhushkov, S. I.; Ackermann, L. Adv. Synth. Catal. 2014, 356, 1461. (e) Kuhl, N.; Schröder, N.; Glorius, F. Adv. Synth. Catal. 2014, 356, 1443. (f) Shi, G.; Zhang, Y. Adv. Synth. Catal. 2014, 356, 1419. (g) Bonin, H.; Sauthier, M.; Felpin, F.-X. Adv. Synth. Catal. 2014, 356, 645. (h) Engle, K. M.; Yu, J.-Q. J. Org. Chem. 2013, 78, 8927. (i) Wencel-Delord, J.; Glorius, F. Nat. Chem. 2013, 5, 369. (j) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814. (k) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. (1) Mitchell, E. A.; Peschiulli, A.; Lefevre, N.; Meerpoel, L.; Maes, B. U. W. Chem.-Eur. J. 2012, 18, 10092. (m) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (n) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. (o) Kuninobu, Y.; Takai, K. Chem. Rev. 2011, 111, 1938. (p) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780. (q) Ackermann, L. Chem. Rev. 2011, 111, 1315. (r) Lapointe, D.; Fagnou, K. Chem. Lett. 2010, 39, 1118. (s) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (t) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (u) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677. (v) Satoh, T.; Miura, M. Chem.-Eur. J. 2010, 16, 11212. (w) Satoh, T.; Miura, M. Synthesis 2010, 3395. (x) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (y) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (z) McGlacken, G. P.; Bateman, L. M. Chem. Soc. Rev. 2009, 38, 2447. (aa) Li, C.-J. Acc. Chem. Res. 2009, 42, 335. (bb) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013. (cc) Ferreira, E. M.; Zhang, H.; Stoltz, B. M. Tetrahedron 2008, 64, 5987. (dd) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (ee) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318. (ff) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (gg) Godula, K.; Sames, D. Science 2006, 312, 67. (hh) Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077. (ii) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698.

(3) (a) Li, L.; Brennessei, W. W.; Jones, W. D. J. Am. Chem. Soc. 2008, 130, 12414. (b) Luo, C.-Z.; Gandeepan, P.; Jayakumar, J.; Parthasarathy, K.; Chang, Y.-W.; Cheng, C.-H. Chem.—Eur. J. 2013, 19, 14181. (c) Zhang, G.; Yang, L.; Wang, Y.; Xie, Y.; Huang, H. J. Am. Chem. Soc. 2013, 135, 8850.

(4) Review: (a) Butschke, B.; Schwarz, H. Chem. Sci. 2012, 3, 308. See also recent examples: (b) Shibata, T.; Takayasu, S.; Yuzawa, S.; Otani, T. Org. Lett. 2012, 14, 5106. (c) Kwak, J.; Ohk, Y.; Jung, Y.; Chang, S. J. Am. Chem. Soc. 2012, 134, 17778. (d) Katagiri, T.; Mukai, T.; Satoh, T.; Hirano, K.; Miura, M. Chem. Lett. 2009, 38, 118.

(5) For annulation of phenylazoles via double C-H bond cleavages/ rollover cyclometalation, see: (a) Qi, Z.; Yu, S.; Li, X. J. Org. Chem. **2015**, 80, 3471. (b) Huang, J.-R.; Zhang, Q.-R.; Qu, C.-H.; Sun, X.-H.; Dong, L.; Chen, Y.-C. Org. Lett. **2013**, 15, 1878. (c) Huang, J.-R.; Dong, L.; Han, B.; Peng, C.; Chen, Y.-C. Chem.—Eur. J. **2012**, 18, 8896. (d) Umeda, N.; Hirano, K.; Satoh, T.; Shibata, N.; Sato, H.; Miura, M. J. Org. Chem. **2011**, 76, 13.

(6) (a) Iitsuka, T.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem.
2015, 80, 2804. (b) Itoh, M.; Hirano, K.; Satoh, T.; Shibata, Y.; Tanaka, K.; Miura, M. J. Org. Chem. 2013, 78, 1365. (c) Mochida, S.;

Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. *Chem. Lett.* **2010**, 39, 744. (d) Morimoto, K.; Hirano, K.; Satoh, T.; Miura, M. *Org. Lett.* **2010**, *12*, 2068.

(7) (a) Tateno, K.; Ogawa, R.; Sakamoto, R.; Tsuchiya, M.; Otani, T.; Saito, T. Org. Lett. **2014**, *16*, 3212. (b) Otani, T.; Saito, T.; Sakamoto, R.; Osada, H.; Hirahara, A.; Furukawa, N.; Kutsumura, N.; Matsuo, T.; Tamao, K. Chem. Commun. **2013**, *49*, 6206.

(8) A similar C2-alkenylation of **1a** using a ruthenium catalyst has been recently reported: (a) Liang, L.; Fu, S.; Lin, D.; Zhang, X.-Q.; Deng, Y.; Jiang, H.; Zeng, W. *J. Org. Chem.* **2014**, *79*, 9472. See also an example for Rh-catalyzed C2-alkenylation of N-carbamoylindoles: (b) Schipper, D. J.; Hutchinson, M.; Fagnou, K. *J. Am. Chem. Soc.* **2010**, *132*, 6910.